
Ernst-Abbe-Hochschule Jena University of Applied Sciences

Werkstofftechnik/

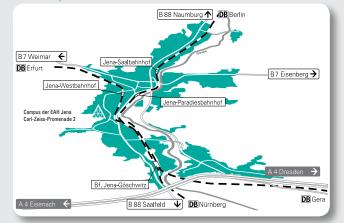
www.eah-jena.de

Studienabschluss

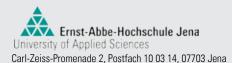
Nach erfolgreichem Studienabschluss verleiht die Ernst-Abbe-Hochschule Jena den international anerkannten akademischen Grad "Master of Engineering" (M. Eng.).

Zugangsvoraussetzungen

Zugangsvoraussetzung für den Masterstudiengang Werkstofftechnik/ Materials Engineering ist ein guter Diplom- bzw. Bachelorabschluss in Werkstofftechnik, Materialwissenschaften oder einem vergleichbaren naturwissenschaftlich-technischen Studiengang.


Berufliche Perspektiven

Die Werkstofftechnik bzw. Werkstoffwissenschaft ist von enormer strategischer Bedeutung für die Entwicklung innovativer Produkte und für die Leistungs- und Wettbewerbsfähigkeit der Wirtschaft. Untersuchungen belegen, dass mehr als Dreiviertel der zwanzig größten deutschen Unternehmen die Werkstoffforschung als bedeutend bis sehr bedeutend für die zukünftige Unternehmensentwicklung einstufen und ca. 60% aller forschenden Unternehmen in Deutschland aus unterschiedlichen Marktsegmenten mit Fragen der Werkstofftechnik befasst sind. Sowohl national als auch international werden umfangreiche Forschungs- und Förderprogramme aufgelegt, um die Entwicklungsdynamik weiter zu beschleunigen. (www.vdi.de) Der Masterabschluss ermöglicht den Zugang zur Promotion weltweit.


Bewerbung	www.eah-jena.de/bewerbung
Dekanat	Tel.: 03641 205-400; Fax: 03641 205-401 E-Mail: scitec@eah-jena.de
Studiengangsleiter/ Studienfachberater	Prof. Dr. Jörg Töpfer Tel.: 03641 205-479 E-Mail: Joerg.Toepfer@eah-jena.de

Anfahrtsplan

Campus-Lageplan

Inhalt und Ziel des Studienganges

Das Ziel der Ausbildung der Absolventen des Masterstudienganges Werkstofftechnik/Materials Engineering besteht darin, qualifizierte Fachkräfte bereit zu stellen, welche die Grundlagen der Natur- und Ingenieurwissenschaften beherrschen, sowie vertiefte Kenntnisse der Werkstoffe und der Werkstofftechnologien besitzen.

Vorteile des Studiums:

stark anwendungsbezogene Ausrichtung des Studiums

Einbindung der Studenten in regionale Netzwerke

Entwicklung fremdsprachlicher Kompetenzen

Lehrveranstaltungen in seminaristischer Form

praktische Übungen in kleinen Gruppen

Vermittlung von vertieften naturwissenschaftlichen und ingenieurtechnischen Kenntnissen

	Modul 1		Mod	Modul 2		Modul 3		Modul4		Modul 5	
1. Semester	Festkörperphysik/ -analytik l		Physikalische Grundlagen und Technologie der Metalle I		Konstruieren mit Kunststoffen	Introduction to FEM	Physikalische Grundlagen der Keramik		Microsystems Engineering	Nicht- technisches WPM I	
2. Semester	Festkörperphysik/ -analytik II		Physikalische G Technologie d	0	Wahlpflichtmodul				Instrumental Chemical Analytics	Nicht- technisches WPM II	
3. Semester	Chemische Nanotechnologien		Verbundwerkstoffe/ Oberflächentechnologien		Kunststoffrecycling/ Alterung		Keramiktechnologie		Anwen- dungen der Bruch- mechanik	Thermo- dynamik	
4. Semester	Soft Skills	Masterarbeit								Kolloquium	
Wahlpflicht- modul	Schadens- analyse	Kunststoff- veredlung Micro- and Nano			ostructures Thin Films Gas Sensing and Aerosol		Materials for Sensors and Electronics Advanced FEM and				
	Scientific computing		Measurement		3D-Design	Simulation	Instrumentation				

WPM aus der

Betriebswirt-

schaftslehre

Aufgaben und Einsatzgebiete

English for

Specific

Purposes II

Der Mangel an qualifizierten und praxisorientiert ausgebildeten Fachkräften für den technisch wissenschaftlichen Bereich wird zunehmend ein Problem in den Wirtschaftszweigen.

Der Masterstudiengang Werkstofftechnik/Materials Engineering soll diesem negativen Trend entgegenwirken. Im Masterstudiengang werden Absolventen für den Einsatz in der anwendungsnahen Forschung und Entwicklung sowie in materialbasierten Industriezweigen ausgebildet.

Mögliche Einsatzgebiete:

Nicht-

technisches

WPM

Industriehranchen mit Werkstoffeinsatz:

English for

Specific

Purposes I

Energietechnik Automobilindustrie Elektronik Informationstechnik

Materialwissenschaftlich orientierte Forschungseinrichtungen

Werkstoffherstellende Industrie:

Weitere

Fremd-

sprachen

Intercultural

Communica-

tion

Baustoffhersteller Metallurgie Glas- und Keramikindustrie

Werkstoffverarbeitende

Industrie: Kunststoffverarbeitung Metallverarbeitung Keramikindustrie

Studienablauf

Der Studiengang Werkstofftechnik/Materials Engineering ist ein konsekutiver Masterstudiengang, der auf dem Bachelor- oder Diplomstudiengang modular aufbaut. In 4 Semestern wird das Wissen erweitert und vertieft. Im Masterstudium wird Wert auf eigenständiges wissenschaftliches Arbeiten und Forschen unter Anleitung gelegt. Hauptsprache des Studienganges ist deutsch. Im letzten Studiensemester wird die Masterarbeit angefertigt und im anschließenden Kolloquium vorgestellt.

Die anwendungsorientierte Ausrichtung des Studienganges an der kommt auch in der Bezeichnung des Abschlusses als Master of Engineering zum Ausdruck.

Studienschwerpunkte:

Technologie der Materialien

Werkstoffbearbeitung Kunststofftechnologie Keramiktechnologie Dünnschichttechnologie Oberflächentechnologie Finite Elemente Methode CAD

Herstellung, Eigenschaften, Einsatz von Materialien

Metalle Kunststoffe Glas / Keramik Verbundwerkstoffe

Materialcharakterisierung

Physikalische Diagnostik Chemische Analysen Partikelanalytik Werkstoffprüfung